Data-driven clustered hierarchical tandem system for LVCSR

نویسندگان

  • Shuo-Yiin Chang
  • Lin-Shan Lee
چکیده

In tandem systems, the outputs of multi-layer perceptron (MLP) classifiers have been successfully used as features for HMM-based automatic speech recognition. In this paper, we propose a data-driven clustered hierarchical tandem system that yields improved performance on a large-vocabulary broadcast news transcription task. The complicated global learning for a large monolithic MLP classifier is divided into simpler tasks, in which hierarchical structures clustered based on the outputs of a monolithic MLP are used to alleviate phone confusion. The proposed approach yields error rate reductions of up to 16.4% over MFCC features alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical processing of the modulation spectrum for GALE Mandarin LVCSR system

This paper aims at investigating the use of TANDEM features based on hierarchical processing of the modulation spectrum. The study is done in the framework of the GALE project for recognition of Mandarin Broadcast data. We describe the improvements obtained using the hierarchical processing and the addition of features like pitch and short-term critical band energy. Results are consistent with ...

متن کامل

Hierarchical neural networks feature extraction for LVCSR system

This paper investigates the use of a hierarchy of Neural Networks for performing data driven feature extraction. Two different hierarchical structures based on long and short temporal context are considered. Features are tested on two different LVCSR systems for Meetings data (RT05 evaluation data) and for Arabic Broadcast News (BNAT05 evaluation data). The hierarchical NNs outperforms the sing...

متن کامل

Cross-lingual and multi-stream posterior features for low resource LVCSR systems

We investigate approaches for large vocabulary continuous speech recognition (LVCSR) system for new languages or new domains using limited amounts of transcribed training data. In these low resource conditions, the performance of conventional LVCSR systems degrade significantly. We propose to train low resource LVCSR system with additional sources of information like annotated data from other l...

متن کامل

Analysis and Comparison of Recent MLP Features for LVCSR Systems

MLP based front-ends have evolved in different ways in recent years beyond the seminal TANDEM-PLP features. This paper aims at providing a fair comparison of these recent progresses including the use of different long/short temporal inputs (PLP,MRASTA,wLP-TRAPS,DCT-TRAPS) and the use of complex architectures (bottleneck, hierarchy, multistream) that go beyond the conventional three layer MLP. F...

متن کامل

ACID/HNN: clustering hierarchies of neural networks for context-dependent connectionist acoustic modeling

We present the ACID/HNN framework, a principled approach to hierarchical connectionist acoustic modeling in large vocabulary conversational speech recognition (LVCSR). Our approach consists of an Agglomerative Clustering algorithm based on Information Divergence (ACID) to automatically design and robustly estimate Hierarchies of Neural Networks (HNN) for arbitrarily large sets of context-depend...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008